# Article

# Article

- Mathematics
- Analysis (calculus)
- Elliptic function and integral

# Elliptic function and integral

Article By:

**Armitage, J. Vernon **Department of Mathematical Sciences, Science Laboratories, University of Durham, Durham, United Kingdom.

**Erdélyi, A. **Formerly, University of Edinburgh, Edinburgh, United Kingdom.

Last reviewed:2014

DOI:https://doi.org/10.1036/1097-8542.228900

- Applications
- Reduction of elliptic integrals
- Periods and singularities
- Inversion of elliptic integrals

- Doubly periodic functions
- Jacobian elliptic functions
- Weierstrass functions
- Theta functions

- Transformation theory
- Links to Primary Literature
- Additional Readings

**The elliptic functions were developed originally by K. F.** Gauss, N. H. Abel, K. G. J. Jacobi, and others in order to solve the problem of finding the arc length of an ellipse, but they proved to have remarkable applications in physics, probability and statistics, algebra, geometry, and arithmetic. The elliptic functions generalize the circular (or trigonometric) functions (sin *x*, and so forth), which are restricted in their applications. The trigonometric functions are periodic in the sense that sin(*x* + 2π) = sin *x*, and so forth, where *x* is associated with the length of the arc of a circle. Elliptic functions are doubly periodic in the sense that there are two complex numbers called the periods. Those complex numbers are the vertices of a parallelogram, and we can picture that parallelogram as being folded over (using the periodicity to identify opposite sides) to obtain a torus. * See also: ***Complex numbers and complex variables**; **Ellipse**; **Torus**; **Trigonometry**

The content above is only an excerpt.

for your institution. Subscribe

To learn more about subscribing to AccessScience, or to request a no-risk trial of this award-winning scientific reference for your institution, fill in your information and a member of our Sales Team will contact you as soon as possible.

to your librarian. Recommend

Let your librarian know about the award-winning gateway to the most trustworthy and accurate scientific information.

## About AccessScience

#### AccessScience provides the most accurate and trustworthy scientific information available.

Recognized as an award-winning gateway to scientific knowledge, AccessScience is an amazing online resource that contains high-quality reference material written specifically for students. Contributors include more than 9000 highly qualified scientists and 43 Nobel Prize winners.

**MORE THAN 8500** articles and Research Reviews covering all major scientific disciplines and encompassing the *McGraw-Hill Encyclopedia of Science & Technology* and *McGraw-Hill Yearbook of Science & Technology *

**115,000-PLUS** definitions from the *McGraw-Hill Dictionary of Scientific and Technical Terms *

**3000** biographies of notable scientific figures

**MORE THAN 19,000** downloadable images and animations illustrating key topics

**ENGAGING VIDEOS** highlighting the life and work of award-winning scientists

**SUGGESTIONS FOR FURTHER STUDY** and additional readings to guide students to deeper understanding and research

**LINKS TO CITABLE LITERATURE** help students expand their knowledge using primary sources of information